If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20c^2-5=0
a = 20; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·20·(-5)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*20}=\frac{-20}{40} =-1/2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*20}=\frac{20}{40} =1/2 $
| c-36=40 | | 7/9x-6=8 | | b-28=39 | | -7.2(x-15.6)=-9312 | | -7−(x+3)=14 | | 2−(x+13)=228. | | -v+5=-v | | 255+2x=10 | | 3x((3*12))=132 | | 3x+1=(-4x)-2 | | 3x(3-12)=132 | | -30=5(x+1)−30=5(x+1 | | 100^2x=10^x | | -14x-44-x^2-4=0 | | 3x(-12x3)=132 | | 5x+13=2x+2-8x | | (x+15*)+(x+6*)+3x=180* | | X-(0.03x)=10000 | | 8.50*x=29,886 | | 15x+116=-64 | | 8w+12=4 | | 9w-8=-1+9w | | 7x=x-15 | | -9h-10=-9h | | 12x-145=-37 | | 3x+35=19 | | 7/13=x/25 | | 9+4y=–10y−5 | | 7/13=x/5^2 | | 8x+-36=20 | | 100+20-10+2y-24=180 | | -1=1,83+(-12x) |